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Absiract

A rotary viscometer, consisting of a rotating rotor surrounded by a slotted sleeve, is placed eccentrically
within a rotating bowl. Using both Newtonian fiuids (of large Reynoids number) and power law (shear-
thinning) fluids, a finite volume method is used to model the two-dimensional flow around the viscometer.
Contour plots of the streamlines are shown for various eccentricities, rotational speeds, Heynolds numbers
and power law indices and ihe effect of these parameters on the flow feld is discussed.

1 INTRODUCTION

This paper looks at the numerical simulation of the
unsteady, isothermal flows of incompressible, VISCOUS,
generalised Newtonian fluids, between two eccentric ro-
tating cylinders with a slotted sleeve placed around the
inner cylinder. The setup is a two-dimensional model
of a viscometer, developed by Overend et al [1984],
used to estimate the rheological properties of settling
sturries and assumes that end effects in the viscometer

are unimportant (see Fig. 1). The bounding cylin-

Figure 1: The two-dimensional model.

ders are assumed to rotate uniformly in opposite di-
rections. This paper uses a finite volume method to
approximate the flow fields devgloped by Newtonian
and shear-thinning Auids. The flow patterns obtained
will aid in assessing the effectiveness of the viscometer

used in practice.

1.1 Governing Differential Equations and
Boundary Conditions

Let {2 represent the region of the xy-plans, between
the two cylinders, with origin at the centre of the ro-
tor, and let Q) and 882, denote the rotor and bowl,
respectively. Also let 903(q = 1,. ..,8) denote the
surface elements of the sleeve consisting of s surface
elements (see Fig. 1). At apoint = (= (z;,%)) in @
and at a given time ¢ € (0,T], the unsteady, isother-
mal fows of incompressible, viscous, generalised New-
{onian fiuids in the domain {3 can be modelled using
the (dimensionless) stream and vorticity functions, viz

%:9 — V- (SKVC — [v+ SV () =

25 (V x [Vh - V]v) -k,

and  A(3) = k7"
(1.1)

Vi +(= 0,

() - . . .
= we 15 3 dimensionless oup where 1, and Y
i o gr - -
are zep;esezzta.twe valnes of the stress and shear rate.

h(¥) represents the dimensionless apparent viscosity

954



function where 4 = /2 (%7 ¥;;). When a = 1, the

fluid is Newtonian and the first equation in (1.1) re-
duces to a homogeneous advection-diffusion equation
where Sh becomes the reciprocal of the Reynolds num-
ber Re = abw,/v. No-slip and po-pecetration con-
ditions are prescribed on the solid surfaces and the
streamn function is defined so that ¥ = 0 on the rotor

and ¥ = K, and ¥ = K3I on the bowl and slotted

sleeve, respactively. Equation (1.1} represents a non-
linearly coupled system of equations; however, we will
decouple this system where at each time step, the dis-
cretised governing equations are solved in sequence.
We seek the steady-state solution to the above tran-
sient problem.

1.2 Discretisation and Assembly

Integrating the first equation in (1.1) over each tessel-
lation (d:) and applying Green’s theorem yields

% 4 —f F - nds :_/ fotds,  (L2)
& Ot ad; ad;
where
Fy = ShV( — v+ SVH](, (1.3)
and ‘
f=25(Vh V)v. (1.4)

Writing f -t = F; - n and assuming ( is piecewise
constant over each tessellation, equation (1.2) can be

written as
G )

_|d*='!_z_j[ (Fi +Fy)nds =0, i=12...,N
ot jer 7

(1.5}
where Fy = (f x k}, { = {(=1,1), |di| denotes the area
of d; and I; tepresents the index set of neighbouring
nodes to the interior node =;. Also, IV, denotes the
number of interior nodes. The notation used here to
denote the edges and nodes of the dual meshes is un-
derstood from Fig. 2. As the integrations in {1.5)
are performed along the sides of a control volume, we
introduce a coordinate system, local to each side lij,
defined by the unit cutward and tangential vectors n
and t respectively (see Fig. 2). Thus, along each L,

Figure 2: The Voronoi tessellation and Delaunay tri-
anguiation around a mesh node,

F1, Fy and A{7} are given by

_ e 8¢ 8h a¢ Bh
Fi = {Shga - (u + 5§;> ¢, Shes ~ (u + 55‘;) g,oJ
16
_ _ Ghdv Ohdv BhOu 6hlu
Fa = (fxk) =25 [671 Gn T B e Bnom 79?55’0]
(1.7)
and

A(¥) = ks {Cz - 4%%)_] =5 ,

where u and v denote the velocity in the directions of

(1.8)

n and t respectively.

Equation (1.5) can be simplified if u is assumed
constant along each ;. Turther, following the finite
volume method used by Miller and Wang [1994], (1.5)

is approximated by

Bejas — 3 2Bl () ¢ - B i = 0
€L K4
_ (1.8)
where my; = ﬂ:——?—&[eﬁi and #%;; and h;; approxi-
mate 1 and h/0n along n. B{z) represents the Bernoulli
function and along &;, A{¥) = k1}(|*~1. We now intro-
duce the implicit time discretisation
E_ k-1
%%— = il &f; and G=olf + (1 -t
(1.10)
The backward-Euler and Crank-Nicholson schemes cor-
respond to ¢ = 1 and ¢ = 1/2 respectively. Therefore,
for a given time sub-interval [tx_1,1] € (0,T], the sys-
tem of linear equations generated from (1.9) to deter-



mine the vorticity at each time step is given by
(I+eD*) 28— B* = (I +[c-1D*) 2, (11)

where E* depends on the boundary conditions, for vor-
ticity, at the no-slip surfaces. These boundary condi-
tions can be estimated using the Poisson equation and
Dirichlet conditions for the stream function.

The Poisson equation in (1.1) can be discretised to

determine the stream function field at each time step,
whence

AT 4 BE = 7 (1.12)
At each time step, ¥ is estimated from
a,fzfgf . i=1,2,.... (1.13)

Usipg the bi-viscosity model of Tanner and Milthorpe
[1983], a well-behaved viscosity function over each tes-
seltation can be determined, viz

a1
Ky ("Y;-k) for  AE> 4., (110
i.14

;u
I

)3’1 for

k1 (% ¥ < e

As K, and K7 are not known a priori, at each time step
they are estimated from the neighbouring nodes to the
no-slip surfaces. Equations (1.14), (1.12) and (1.14)
represent a non-linearly coupled system; however, this
system can be Hnearised by solving the three equations

in sequence.

1.3 Solution Process

The non-linear system given by equations (1.11), (1.12)
and (1.14) is decoupled into a system of three lin-
ear equations. An iterative scheme is used to accom-
plish this where the outer (non-linear) iteration is per-
formed only once per time step. At the inner level,
each of the linear equations {i.e., equations {1.11} and
(1.12)) is solved using the CGS method given by Son-
neveld [1988]. Incomplete LU factorisation is used to
precondition the matrices. Due to the lack of infor-
mation for the Dirichlet boundary conditions for the
stream function, the discretised Poisson equation and
estimates K> and K3 are solved repeatedly until self-
consistent solutions are obtained. The numerical sta-
bility of the solver for equations (1.11) and {1.12) is en-
sured since, for all problems considered, the coefficient

matices I+ cD* and A can be shown to be M-matices.
At the end of cach time step (i.e., each outer iteration),
the scalar fields for the stream, vorticity and viscosity
functions are stored. Convergence is established when
the difference in each of the three scalar fields, over
a prescribed time period, is small. The convergence
criteria becomes increasingly more difficult to satisfy
as either S or || (the magnitude of the relative rota-
tional speed of the rotor) become large or when « is
made small. The rate of convergence of the iterative
scherne is at best linear and is affected by the initial
guess and also by the length of the time step, Afg,
used. The choice of initial guess depends on the pa-
rameters {5, a, U} to be solved. If the flow pattern is
wanted for large § or |U}, we use the steady-state (i.e.,

‘converged) solution o a2 problem with smaller § or |J]

as the initial guess. A similar process is used when
obtaining steady-state sclutions for small «, i.e., the
steady-state solution for higher « is used as the inital
guess. We also note that some smoothing of the vor-
ticity and viscosity is done at each time step; this en-
hances the stability of the interative scheme. As small
time steps are used i our solution process, we dis-
cretise the time component using the Crank-Nicholson

scheme; thus, we put ¢ = 1/2 in equation {1.11).

Z2 RESULTS

For the contour plots presented here, 2 spacing of 0.2
between each strearnline is used. We first -consider the
case when the flow domain is filled with 2 Newtonian
fluid and then discuss the developed fow when pseu-
doplastic {shear-thinning) fuids are used,

2.1 MNewtonian Fluids

In this section, we consider moderate- to high- Reynolds
pumber flow only. For an analvtic treatment in the
low Heynolds number limit, the interested reader is re-
ferred to Hird and Siew [1596]. Consider the problems
{500.0,0.2, —5.0}, {500.0,0.5, —5.0} and {500.0,0.7,

~5.0} where the first term represents the Reynolds
number (Re), the second term represents the eccentric-
ity ratio (€ = ae/(b~a)) and the third term represents
U {= cwi fbwy). The solution fields are given in Fig. 3.
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Figure 3: Contour plots in the entire fiow field and
around the sleeve for Re = 500,07 = ~5.0 and various

€.

An eddy, rotating counter-clockwise, is generated for
an eccentricity as small as 0.2, From Fig. 3, the pres-
ence of the eddy does not restrict the How through the
slotted sleeve which is predominentiy through the side
closest to the eddy. As the eccentricity is increased,
the amount of fuid Howing through the contraction
(the region where the sleeve is closest to the bowl) is
reduced and more fluid now enters the annufus from
the side closest to the eddy which is now moving in
the direction of rotation of the bowl. This is verified
from Table 1 which gives the eddy centre as well as the
stream function {¢.) and vorticity ({;) values there.
According to Table 1, the vorticity at the eddy centre
decreases, while the stream function at the eddy centre
increases with increasing eccentricity.

Yo

E (:L.CﬂyC) CC
02 (1.27,~-0.87) 0.75 1.20
0.5 (2.25,-0.36) 1.24 080
0.7 (2.81,-0.21) 143 0.67

Table 1: Values of 4, and ( at {z.,y.).

Fig. 3 shows the presence of stagnation points
and suggests that the flow within the annclar region
is bidirectional. The same observation holds for the
non-Newtonian case, Current study shows that upon
increasing the speed of the rotor, the flow through the
slotted sleeve and through the contraction become re-
stricted causing the eddy centre to move in the direc-
tion of the rotation of the rotor. Also, for Reynolds
nurmber in the range 50 ~ 1000 the dow fields obtained
are qualitatively similar, although the computed values
of the stream and verticity funciions are different.

Fig. 4 shows the vorticity along two diameters of
the bowl that pass close to the slotted sleeve. The vor-
ticity generated correspond to the problems {50.0,0.5,

Re=1008

G 8 EF F

Rem5

P

Figure 4: Vorticity along two lines.

—10.0} and {1000.0,0.5, ~10.0}. The peaks indicate
when the line is closest to the sloited sleseve. From
these results, we can conclude that the vorticity gen-
erated zlong the no-slip surfaces is not diffused into
the main fow domain. This is in contrast with the

‘results obtained when the bounding cvlinders rotate

in the same direction {not shown here): the vorticity
generated along the slotted sleeve is diffused into the
main How domain.

2.2 Pseudoplastic Fluids

To study the Sow of pseudoplastic Buids within the
model, we fix the eccentricity ratio (£), the fluid con-
sistency coefficient {k;) and the critical shear rate (7.)
at 6.7, 0.2 and 0.001, respectively. The flow fields pre-
sented here are used to study the effect of the dimen-
sionless parameter S and the power law index o on
the fow field. A more complete study is currently be-
ing done. In each of the diagrams given below, the
contour lines and the apparent viscosity function are
superimposed. The light regions dencie regions of low
shear or, equivalently, regions of high apparent vis-
cosity. To study the effect of the parameter 5, we
solve the problems {0.2,0.8, —5.0}, {1.0,0.8,—5.0} and
[5.0,0.8,~5.0}. This set notation defines, 5, w and U
respectively. The location and values of the stream
function, vorticity function and apparent viscosity at
the eddy center, together with the torgue exerted along
the rotor are given in Table 2. Fig, 5 shows the fow
fields for the exireme values of 5. From thess figures
we see that when § = 5.0 (the second figure), the ap-
parent viscosity is diffused vniformly from the slotted
sleeve into the main region; however, for the developed
flow corresponding to the smaller value of 5, the vis-
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Ei
5

S (Zc, %)

Ye G he 7

0.2 (2.81,-0.21)

1.46 0.7 0.216 122.32

BuTe

£

1.0 (2.33,-0.31) 1.43 0.67 0216 132.21
50 (2.38,-0.31) 1.35 0.82 0.208 137.74

Table 2: Values of 1, { and viscosity at (z.,y.) and
torque along the rotor.

cosity is convected away from the sleeve by the fluid
fowing through the contracticn. This behaviour can
be explained in two ways. From equation (1.1), 5§ can
be regarded as the diffusivity for both { and A{}). As
5 increases, the rate of diffusion of these functions is
increased. The relationship between { and k(%) is seen
n (1.8). The second explanation interprets the dimen-
sionless parameter, &, as the ratic of shear forces to
‘inertia forces. An increase in § corresponds to an in-
crease in shear forces in the fow domain, As § is in-
¢creased, the increase in shear forces is seen in Table 2
threugh the increase in the vorticity and the decrease
in the apparent viscosity at the eddy center. From the

Contour plots in the flow field for contour plots, we see that increasing S produces a uni-

form diffusion of the apparent viscosity causing a more
symmetric {about the horizontal) flow field and more
Auid now flows through the contraction.

We now study the effect of varying the power law
index, . Upon increasing the non-Newtonian behaviour
of the fluid, the torque around the rotor decreases and
the apparent viscosity in the flow field is increased.
Fig. 6 shows the flow fields corresponding to the prob-
lems {0.2,0.8,—2.0} and {0.2,0.2,~2.0}. From these
figures the change in the viscosity can be seen. For ex-
ample, the low-shear regions behind each no-slip sur-
face of the sleeve are removed as « is decreased, and the
colour in the domain becomes more uniform indicat-
ing less variation in the apparent viscosity. From the
contour lines, we see that as o is reduced, more fluid
now Hows through the region of the sleeve closest to
the bowl than before and less fiuid fows through the
contraction; thus, causing the streamlines to become

more circular.

in the flow field for
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3 CONCLUSIONS

The study outlined in this paper was undertaken o ex-
amine the behaviour of the fiuid fow around a slotted
siseve placed concentrically around the interior cylin-
der of two ecceniric rotating cylinders. The geometry
used here represents a two-dimensional mode! of a vis-
corneter designed to mueasure the rheological proper-
ties of settling slurries. There are many faciors that
affect the performance of this viscomeler. Two impor-
tant factors that can be easily studied are the amount

of mixing present within the flow field and the lpca-
By determining the amount

[ ) “egiﬁﬁs. By determunt

LI0n O1 MOW-SNgAY T

of mixing the fluid undergoes, the ability of the vis-
cometer to maintain the homogeneity of the slurry can
be assessed. Locating the regions of low shear rate
may indicate where the particles in the slurry are con-
centrated. This phenomenon has been observed both
experimentally and numerically by Then-Thien et al
[1995] using particles suspended in a viscous Newto-
nian fuid placed between eccentric rotating ¢cylinders
(but without a slotted sleeve}. From the results pre-
sented here, the mixing of the slurry is expsacted to be
enhanced by moving the concentric system {i.e., the
rotor and the slotted sleeve) closé to the rotating bowl
and using low to moderate rotational speeds for the
rotor and bowl, If the slurry is assumed pseudoplas-
tic, then for slurries modelled using moderate to high
values of the power law index, regions of low shear
rate are located behind each surface element of ihe
sleeve and close io the surface of the bowl. The ap-
parent viscosity within the flow field is increased for
slurries modelled using a large value for 5, or for slur-
ries possessing strong non-Newtonian behaviour {ie.,
small @). An increase in the apparent viscosity can
also be achieved by increasing the speed of the rotor
but this will severely affect the mixing of the fluid.
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